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1.1 INTRODUCTION

Basin is a zero-fee decentralized exchange (DEX) created by Beanstalk for

the community.

It allows users to create different types of pools or Wells with custom

amounts of tokens, as well as custom functions for liquidity additions,

removals, and swaps. With Basin, Beanstalk users can swap tokens without

incurring any protocol fees. In addition, liquidity providers can enjoy

other advantages in the protocol, such as earning seigniorage instead of

fees from pool users.

Furthermore, Beanstalk also created Pumps. The Pumps are updating ora-

cles, providing real time updates every time there is a change in a Basin

of reserves. This information stored in a different kind of oracles

can be used by the protocol to share their seigniorage to the liquidity

providers depending on their value stored in the Basin, but also for

other protocols that can also be use it if they need the current on-chain

price of some of their assets.

Beanstalk engaged Halborn to conduct a security audit on their smart

contracts beginning on January 19th, 2023 and ending on February 23rd,

2023 for the Basin Audit and beginning March 22nd, 2023 and ending on April

19th for the Aquifer & Pumps Audit enhancement. The security assessment

was scoped to the smart contracts provided to the Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided a total of 8 weeks for the engagement

and assigned a full-time security engineer to audit the security of

smart contracts, 4 weeks for the Basin and 4 weeks for the Pumps and

Aquifer smart contracts. The security engineer is a blockchain and

smart-contract security expert with advanced penetration testing, smart-

contract hacking, and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:
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• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some issues that were mostly addressed by

the Beanstalk team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the contracts’ solidity code and can

quickly identify items that do not follow security best practices. The

following phases and associated tools were used throughout the term of

the audit:

• Research into architecture and purpose.

• Smart contract manual code review and walkthrough.

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing with custom scripts. (Foundry).

• Static Analysis of security for scoped contract, and imported func-

tions manually.

• Testnet deployment (Anvil).
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2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.
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2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me
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2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.
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Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4
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2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs
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The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9
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2.4 SCOPE

The first half of the security assessment was scoped to the following

smart contracts on the Basin branch:

• Well.sol

• Auger.sol

• ImmutableWellFunction.sol

• ImmutableTokens.sol

• ImmutablePumps.sol

• LibBytes.sol

• LibMath.sol

• ConstantProduct2.sol

Commit ID: 7c498215f843620cb24ec5bbf978c6495f6e5fe4

Fixed Commit ID: e5441fc78f0fd4b77a898812d0fd22cb43a0af55

The second half of the security assessment was scoped to the following

smart contracts on the Pumps & Aquifer branch:

• Aquifer.sol

• GeoEmaAndCumSmaPump.sol

• ABDKMathQuad.sol

• LibBytes.sol

• LibBytes16.sol

• LibContractInfo.sol

• LibLastReserveBytes.sol

• LibWellConstructor.sol

Commit ID: e5441fc78f0fd4b77a898812d0fd22cb43a0af55

16

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/BeanstalkFarms/Wells/tree/7c498215f843620cb24ec5bbf978c6495f6e5fe4
https://github.com/BeanstalkFarms/Wells/commit/7c498215f843620cb24ec5bbf978c6495f6e5fe4
https://github.com/BeanstalkFarms/Wells/commit/e5441fc78f0fd4b77a898812d0fd22cb43a0af55
https://github.com/BeanstalkFarms/Wells/tree/audit/halborn-20230310
https://github.com/BeanstalkFarms/Wells/commit/e5441fc78f0fd4b77a898812d0fd22cb43a0af55


3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

1 1 3 1 4
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SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

LIQUIDITY DRAIN WITH AN
UNAUTHORISED TOKEN

Critical (10) SOLVED - 03/10/2023

SLIPPAGE MANIPULATION High (8.8) RISK ACCEPTED

USING HIGH TOKEN AMOUNTS IN WELLS
CONTRACT LEADS TO DENIAL OF SERVICE

Medium (6.7) SOLVED - 03/10/2023

OPPORTUNITY FOR MEV ATTACKS Medium (6.2) SOLVED - 03/10/2023

FEE(/BURN)-ON-TRANSFER TOKENS NOT
SUPPORTED

Medium (5.9) SOLVED - 03/10/2023

MISSING TOKEN ARRAY LENGTH CONTROL
IN THE CONSTRUCTOR CAN PREVENT
ADDING AND REMOVING LIQUIDITY

Low (3.1) ACKNOWLEDGED

UNNECESSARY TYPE CASTING
Informational

(0.0)
SOLVED - 03/10/2023

USE SAFE TAG IN INLINE ASSEMBLY
CODE SECTIONS

Informational
(0.0)

ACKNOWLEDGED

USE CUSTOM ERRORS TO SAVE GAS
Informational

(0.0)
SOLVED - 03/10/2023

UNNEEDED INITIALIZATION OF INTEGER
VARIABLES TO 0

Informational
(0.0)

SOLVED - 03/9/2023
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4.1 (HAL-01) LIQUIDITY DRAIN WITH AN
UNAUTHORISED TOKEN - CRITICAL(10)

Description:

The Well.sol contract does not correctly validate the address provided

as a parameter to the swap functions, which allows for the exchange of

tokens that are not included in the well storage.

The issue was discovered in the swapTo function. However, other functions

may have used to perform swaps on the contract are also vulnerable. These

other functions are:

• swapFrom()

• swapOut()

• swapIn()

The vulnerability arises from the validation performed by the internal

function _getIJ. This function takes the array of tokens stored in the

Well contract and the two addresses introduced by the user on the swap

function. However, the function does not revert when it is unable to

find one of those addresses. Instead, it returns the zero index, which

is actually a valid index for a token that exists in the storage.
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Code Location:

Code Section - Well.sol#L195

Listing 1: Well.sol (Line 195)

186 function swapTo(

187 IERC20 fromToken ,

188 IERC20 toToken ,

189 uint maxAmountIn ,

190 uint amountOut ,

191 address recipient

192 ) external nonReentrant returns (uint amountIn) {

193 IERC20 [] memory _tokens = tokens ();

194 uint[] memory reserves = _updatePumps(_tokens.length);

195 (uint i, uint j) = _getIJ(_tokens , fromToken , toToken);

196

197 reserves[j] -= amountOut;

198 uint reserveIBefore = reserves[i];

199 reserves[i] = _calcReserve(wellFunction (), reserves , i,

ë totalSupply ());

200

201 // Note: The rounding approach of the Well function

ë determines whether

202 // slippage from imprecision goes to the Well or to the

ë User.

203 amountIn = reserves[i] - reserveIBefore;

204

205 require(amountIn <= maxAmountIn , "Well: slippage");

206 _setReserves(reserves);

207 _executeSwap(fromToken , toToken , amountIn , amountOut ,

ë recipient);

208 }

Code Section - Well.sol#L571-L573

Listing 2: Well.sol (Lines 571,572,573)

566 function _getIJ(

567 IERC20 [] memory _tokens ,

568 IERC20 iToken ,

569 IERC20 jToken

570 ) internal pure returns (uint i, uint j) {

571 for (uint k; k < _tokens.length; ++k) {
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572 if (iToken == _tokens[k]) i = k;

573 else if (jToken == _tokens[k]) j = k;

574 }

575 }

Proof Of Concept:

The Foundry test provided below simulates exploitation of the described

issue. The test case performs the following steps:

1. Create a well with two different tokens.

2. User4 deposits 10e18 of each token on the well.

3. User1 swaps 10e18 of a token not used in the well for a token that

exists in the well.

4. Finally, the test performs the appropriate asserts to ensure the

transaction has performed correctly.

Listing 3: Tester.t.sol

1 function testRandomTokenTransfer () public {

2 IERC20 [] memory ltokens = new IERC20 [](2);

3 ltokens [0] = tokens [0];

4 ltokens [1] = tokens [1];

5 Call[] memory _pumps = new Call [](0);

6 well = Well(auger.bore( 'MyWell ', 'WL', ltokens , Call(

ë address(new ConstantProduct2 ()), new bytes (0)), _pumps));

7

8 tokens [0]. mint(user4 , 10 ether);

9 tokens [1]. mint(user4 , 10 ether);

10 tokens [4]. mint(user1 , 10 ether);

11

12 uint[] memory tokenAmountsIn = new uint [](2);

13 tokenAmountsIn [0] = 10 ether;

14 tokenAmountsIn [1] = 10 ether;

15

16 vm.startPrank(user4);

17 tokens [0]. approve(address(well), 10 ether);

18 tokens [1]. approve(address(well), 10 ether);

19 well.addLiquidity(tokenAmountsIn , 0, user4);

20 vm.stopPrank ();
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21

22 uint[] memory reservesPrev = well.getReserves ();

23

24 vm.startPrank(user1);

25 tokens [4]. approve(address(well), 10 ether);

26 well.swapTo( tokens [4], tokens [0], 10 ether , 10 ether ,

ë user1 );

27 vm.stopPrank ();

28

29 uint[] memory reserves = well.getReserves ();

30

31 assertEq(tokens [0]. balanceOf(address(well)), 0);

32 assertEq(tokens [4]. balanceOf(address(well)), 10 ether);

33 assertEq(reservesPrev [0], 10 ether);

34 assertEq(reserves [0], 10 ether);

35 assertEq(tokens [0]. balanceOf(user1), 10 ether);

36 }

In the end, the test ensures that the well does not have balance of the

token that it should, also checks that the user received the tokens from

the well. As it is possible to observe in the next screenshot, the test

succeeds completing the exploitation.

BVSS:

AO:A/AC:L/AX:L/C:N/I:H/A:H/D:L/Y:N/R:N/S:U (10)

Recommendation:

Consider reverting a transaction when a token address introduced by

parameter is not in the Well storage.
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Remediation Plan:

SOLVED: The Beanstalk team solved the issue by adding a check whether the

token is valid in commit e5441fc7.
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4.2 (HAL-02) SLIPPAGE
MANIPULATION - HIGH (8.8)

Description:

The slippage in the swaps can be manipulated with the addLiquidity()

function:

A regular Swap is performed by calling the SwapFrom (or SwapTo) function

(A1). And when a Swap is executed, the slippage is calculated considering

the current liquidity in the Well.

However, the slippage can be manipulated: either with a Flash Loan or

large capital, a user can use the addLiquidity function (B1) to move the
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curve further from the axis (see the picture) and then execute the Swap

(B2) and finally remove the liquidity (B3).

The result is that the swapper bypasses the slippage (or at least part

of it) and all the amount the swapper is saving through the swap is, in

fact, lost by the liquidity providers, who are in a worse position when

removing the liquidity.

Proof of Concept:

Fuzzing tests were performed to find optimal parameters to proceed with

the slippage manipulation.

The test was performed as follows:

• The scenario is a Well of 2 tokens with a specific market value:

xToken that worth 1 dollar, and yToken that worth 2 dollars.

• A Liquidity Provider adds a specific amount of tokens (amount2 in

the test, 1st parameter fuzzed) to a Well of xToken and yToken in a

2/1 ratio.

• Alice executes a swap from xToken to yToken of a specific amount

(amountIn, 2nd parameter fuzzed)

• Then, is checked the total value of Alice tokens after the swap,

which is: 299910251607372057573202.

• Later, the 2nd scenario is set and Alice starts a mocked flash loan

of a specific amounts (flashAmountY, 3rd parameter fuzzed).

• Alice addLiquidity of all the value from the flash loan.

• Then, the Swap is executed with the same amountIn.

• Finally, Alice removeLiquidity and the loan is paid back.

• The total amount from the swap is 299999999999802452239009, instead

of 3x10ˆ23 so the slippage is negligible.
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The following screenshot illustrates how the fuzzing test was performed:

Arguments used:

• amount2 = 572055_274345744696904184

• amountIn = 10178_190357730689611534

• flashAmountY = 14061_130890796777584981
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The screenshot below results outcome of the attack:
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BVSS:

AO:A/AC:L/AX:L/C:N/I:H/A:N/D:M/Y:N/R:N/S:U (8.8)

Recommendation:

A solution to this issue is to introduce a limit for the addLiquidity()

and removeLiquidity() functions. For example, a require function in the

functions that only allows executing if the LP tokens amountIn is bigger

than well.totalSupply divided by 1000. Therefore, users can only retire

or add a maximum of 0.1% of what is in that time in the Well.

Remediation Plan:

RISK ACCEPTED: The Beanstalk team accepted the risk of this issue, trust-

ing market efficiency in the protocol.
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4.3 (HAL-03) USING HIGH TOKEN
AMOUNTS IN WELLS CONTRACT LEADS TO
DENIAL OF SERVICE - MEDIUM (6.7)

Description:

If a high amount of tokens is deposited in a Well either because it is

frequently used or because the tokens are very cheap, the precision of

1e18 used in the calcTokenSupply eventually leads to an overflow since

the totalSupply of LP tokens is too high.

Code Location:

Listing 4: ConstantProduct2.sol (Lines 25,32)

25 uint constant EXP_PRECISION = 1e18;

26

27 /// @dev `s = (b_0 * b_1)^(1/2) * 2`

28 function calcLpTokenSupply(

29 uint[] calldata reserves ,

30 bytes calldata

31 ) external override pure returns (uint lpTokenSupply) {

32 lpTokenSupply = (reserves [0]* reserves [1]* EXP_PRECISION).

ë sqrt() * 2;

33 }

BVSS:

AO:A/AC:L/AX:M/C:N/I:N/A:H/D:M/Y:M/R:N/S:U (6.7)
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Proof Of Concept:

For the proof of concept, let’s say that a Well is created with 2 tokens:

xToken and yToken such that yToken is worth twice as much as xToken.

These tokens are worth 0.0000001$ and 0.0000002$ respectively (in the

order of BitTorrent value, for example).

Over time, the Well is feed by the community by a total amount of 400

Billion of xToken and 200 Billion of yToken. Then, a big liquidity

provider, Alice, wanted to addLiquidity adding 100 Billion of xToken

and 500 Billion of yToken which has a total worth of 20000$. When the

addLiquidity() function is called, the transaction reverts because of the

arithmetic overflow error in the calcLpTokenSupply() function.

Here is the testAddLiquidityInflated() test:
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Here is the output of the test:
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Recommendation:

The problem is in the precision, which is 1e18. However, if the precision

is reduced too much, then the minimum amount to add liquidity (1e-18 of

LP tokens) could be very expensive for the provider. The challenge is to

find a balance or, in fact, choose another kind of solution that other

DEXs are using:

• First of all, the Well contract should send specific amount of tokens

to the address zero as share to address(0). With this solution, the

pool is also harder to be out of liquidity, and also can have less

slippage in the swaps.

• Secondly, in the following addLiquidity() function, the lpAmountOut

variable has to be related to the totalSupply LP tokens as, for

example, Uniswap V2 is doing.

Remediation Plan:

SOLVED: The Beanstalk team fixed the issue by changing the EXP_PRECISION

from 1e18 to 1e12 in commit e5441fc7.
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https://github.com/BeanstalkFarms/Wells/commit/e5441fc78f0fd4b77a898812d0fd22cb43a0af55


4.4 (HAL-04) OPPORTUNITY FOR MEV
ATTACKS - MEDIUM (6.2)

Description:

The fact that Wells are zero-fee liquidity pools makes them vulnerable

to certain types of MEV (Miner Extractable Value) attacks. In other

cases, fees paid to liquidity providers can prevent such attacks, as

they make them more expensive and reduce incentives. The protocol needs

to include measures to make it more difficult to execute these types of

attacks. Furthermore, when combined with the lack of precautions against

MEV attacks, the slippage manipulation bug -which is explained below in

the report (HAL-04 SLIPPAGE MANIPULATION)- makes it easier to perform

an advanced sandwich attack. This combines swaps with addLiquidity and

removeLiquidity, squeezing the victim into a worse price. Additionally,

the slippage is controlled by the user, so it is possible to make a profit

by executing these attacks.

Proof of Concept:

A Well with xTokens and yTokens is deployed. First of all, a

LiquidityProvider adds liquidity to the protocol of 100 million for both

tokens (we can imagine for the sake of the value stolen, that the tokens

are worth $1).

The second step is that Bobby wants to execute a swap from xToken to get

yToken and the amount is a 2% of the pool. Then, Bobby needs to calculate

the expected output and adding a Slippage Tolerance to it and then sends

the transaction.
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When the transaction is in the mempool, Alice, who executes MEV attack,

the transaction and executes the frontrunning attack taking benefit from

the Slippage Manipulation.

- Alice addLiquidity to the Well (Add)

- Executes a swap in the same direction as the victim (Sw1)

- The victim, Bobby, swap his tokens correctly because the slippage

tolerance parameter works properly. (SwB)

- Then executes an inverted swap. (Sw2)

- Alice removesLiquidity and repays the loan. (Rmv)

This is the PoC in code:
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The output is that Alice is stealing $30k-$40k from liquidity providers

and from Bobby, which is not too much while talking about transactions

of millions, but at least something to take into consideration and a

source of possible further vulnerabilities. In fact, in case that any

user have a mistake with the slippage tolerance parameter, the problem

would be incremented and not only the user but also the providers would
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be affected.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:L/D:M/Y:L/R:N/S:U (6.2)
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Recommendation:

• Adding a deadline modifier to the swaps to make it difficult to be

frontrun.

• Adding a limit to addLiquidity and removeLiquidity to prevent Slip-

page Manipulation

• And probably including a minimal fee for the pools or for the users

to make more difficult to take value from users’ transactions.

Remediation Plan:

SOLVED: The Beanstalk team attenuated the issue by adding a deadline

modifier to the swaps in commit e5441fc7
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https://github.com/BeanstalkFarms/Wells/blob/audit/halborn-20230310/src/Well.sol#L734


4.5 (HAL-05) FEE(/BURN)-ON-TRANSFER
TOKENS NOT SUPPORTED - MEDIUM (5.9)

Description:

When a Well is deployed with feeOnTransfer or burnOnTransfer tokens, and

a user executes a swap, the reserves are updated with the amountIn or

amountOut passed as a parameter, without verifying that those tokens

are properly received. Therefore, if the transfer() function does not

send the entire amount to the Well, problems may arise in both calcu-

lating liquidity and managing the reserves, which may affect all Well

functionalities.

Here’s a list of this kind of tokens:

- Safemoon (SAFEMOON)

- Bonfire (BONFIRE)

- HODL (HODL)

- ELONGATE (ELONGATE)

- EverRise (RISE)

- Baby Cake (BABYCAKE)

- Dogelon Mars (ELON)

Code Location:

Listing 5: Well.sol (Line 150)

139 function swapFrom(

140 IERC20 fromToken ,

141 IERC20 toToken ,

142 uint amountIn ,

143 uint minAmountOut ,

144 address recipient

145 ) external nonReentrant returns (uint amountOut) {

146 IERC20 [] memory _tokens = tokens ();

147 uint[] memory reserves = _updatePumps(_tokens.length);

148 (uint i, uint j) = _getIJ(_tokens , fromToken , toToken);

149

150 reserves[i] += amountIn;
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151 uint reserveJBefore = reserves[j];

152 reserves[j] = _calcReserve(wellFunction (), reserves , j,

ë totalSupply ());

153

154 // Note: The rounding approach of the Well function

ë determines whether

155 // slippage from imprecision goes to the Well or to the

ë User.

156 amountOut = reserveJBefore - reserves[j];

157

158 require(amountOut >= minAmountOut , "Well: slippage");

159 _setReserves(reserves);

160 _executeSwap(fromToken , toToken , amountIn , amountOut ,

ë recipient);

161 }

Listing 6: Well.sol (Line 197)

186 function swapTo(

187 IERC20 fromToken ,

188 IERC20 toToken ,

189 uint maxAmountIn ,

190 uint amountOut ,

191 address recipient

192 ) external nonReentrant returns (uint amountIn) {

193 IERC20 [] memory _tokens = tokens ();

194 uint[] memory reserves = _updatePumps(_tokens.length);

195 (uint i, uint j) = _getIJ(_tokens , fromToken , toToken);

196

197 reserves[j] -= amountOut;

198 uint reserveIBefore = reserves[i];

199 reserves[i] = _calcReserve(wellFunction (), reserves , i,

ë totalSupply ());

200

201 // Note: The rounding approach of the Well function

ë determines whether

202 // slippage from imprecision goes to the Well or to the

ë User.

203 amountIn = reserves[i] - reserveIBefore;

204

205 require(amountIn <= maxAmountIn , "Well: slippage");

206 _setReserves(reserves);

207 _executeSwap(fromToken , toToken , amountIn , amountOut ,

ë recipient);
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208 }

BVSS:

AO:A/AC:L/AX:M/C:N/I:H/A:N/D:L/Y:L/R:N/S:U (5.9)

Recommendation:

When updating reserves, check the balances before and after the transfer()

to make sure the right amount is received by the Well.

Remediation Plan:

SOLVED: The Beanstalk team solved the issue by adding specific function-

ality for feeOnTransfer tokens in commit e5441f.
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https://github.com/BeanstalkFarms/Wells/commit/e5441fc78f0fd4b77a898812d0fd22cb43a0af55


4.6 (HAL-06) MISSING TOKEN ARRAY
LENGTH CONTROL IN THE CONSTRUCTOR
CAN PREVENT ADDING AND REMOVING
LIQUIDITY - LOW (3.1)

Description:

The Well.sol contract accepts up to four tokens on the constructor. If

created incorrectly with an array of length four and two zeros in it,

contract storage assumes tokens are array lengths of 4.

When performing transactions such as adding or removing liquidity, the

contract iterates with the token length over the inputs introduced by

the user. If the contract is just supposed to work with two tokens, the

array introduced by the user is likely to have two positions. In those

cases, the contract will revert with an Index Out Of Bound error.

This same principle also applies to the view functions related to adding

or removing liquidity.

Code Location:

Well.sol#L258

Listing 7: Well.sol (Lines 251,258,259)

250 function addLiquidity(

251 uint[] memory tokenAmountsIn ,

252 uint minLpAmountOut ,

253 address recipient

254 ) external nonReentrant returns (uint lpAmountOut) {

255 IERC20 [] memory _tokens = tokens ();

256 uint[] memory reserves = _updatePumps(_tokens.length);

257

258 for (uint i; i < _tokens.length; ++i) {

259 if (tokenAmountsIn[i] == 0) continue;

260 _tokens[i]. safeTransferFrom(
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https://github.com/BeanstalkFarms/Wells/blob/master/src/Well.sol#L258


261 msg.sender ,

262 address(this),

263 tokenAmountsIn[i]

264 );

265 reserves[i] = reserves[i] + tokenAmountsIn[i];

266 }

267 lpAmountOut = _calcLpTokenSupply(wellFunction (), reserves)

ë - totalSupply ();

268

269 require(lpAmountOut >= minLpAmountOut , "Well: slippage");

270 _mint(recipient , lpAmountOut);

271 _setReserves(reserves);

272 emit AddLiquidity(tokenAmountsIn , lpAmountOut);

273 }

Well.sol#L307

Listing 8: Well.sol (Line 195)

296 function removeLiquidity(

297 uint lpAmountIn ,

298 uint[] calldata minTokenAmountsOut ,

299 address recipient

300 ) external nonReentrant returns (uint[] memory tokenAmountsOut

ë ) {

301 IERC20 [] memory _tokens = tokens ();

302 uint[] memory reserves = _updatePumps(_tokens.length);

303 uint lpTokenSupply = totalSupply ();

304

305 tokenAmountsOut = new uint []( _tokens.length);

306 _burn(msg.sender , lpAmountIn);

307 for (uint i; i < _tokens.length; ++i) {

308 tokenAmountsOut[i] = (lpAmountIn * reserves[i]) /

ë lpTokenSupply;

309 require(

310 tokenAmountsOut[i] >= minTokenAmountsOut[i],

311 "Well: slippage"

312 );

313 _tokens[i]. safeTransfer(recipient , tokenAmountsOut[i])

ë ;

314 reserves[i] = reserves[i] - tokenAmountsOut[i];

315 }

316
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https://github.com/BeanstalkFarms/Wells/blob/master/src/Well.sol#L307


317 _setReserves(reserves);

318 emit RemoveLiquidity(lpAmountIn , tokenAmountsOut);

319 }

Proof Of Concept:

This test creates a Well with an array of four tokens, but just giving

non-zero values to two of them. It attempts to add liquidity with a two

length array of amounts.

Listing 9: Tester.t.sol

1 function testIndexOutOfBounds () public {

2 IERC20 [] memory ltokens = new IERC20 [](4);

3 ltokens [0] = tokens [0];

4 ltokens [1] = tokens [1];

5 Call[] memory _pumps = new Call [](0);

6

7 Well well = Well(auger.bore( 'MyWell ', 'Well', ltokens ,

ë Call(address(new ConstantProduct2 ()), new bytes (0)), _pumps));

8

9

10 tokens [0]. mint(user4 , 10 ether);

11 tokens [1]. mint(user4 , 10 ether);

12 tokens [0]. mint(user2 , 10 ether);

13

14 uint[] memory tokenAmountsIn = new uint [](2);

15 tokenAmountsIn [0] = 10 ether;

16 tokenAmountsIn [1] = 10 ether;

17

18 vm.startPrank(user4);

19

20 tokens [0]. approve(address(well), 10 ether);

21 tokens [1]. approve(address(well), 10 ether);

22 well.addLiquidity(tokenAmountsIn , 0, user4);

23

24 vm.stopPrank ();

25 }

As it is possible to observe from the next screenshot, the test triggers

the revert as previously explained.
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BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:L/D:N/Y:N/R:N/S:C (3.1)

Recommendation:

Do not allow creating a Well with token zero as address. Also, check the

length of the user input on add and remove liquidity functions, comparing

it to the token length obtained from storage before iterating.

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged this issue.
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4.7 (HAL-07) UNNECESSARY TYPE
CASTING - INFORMATIONAL (0.0)

Description:

The function calcReserve of the ConstantProduc2.sol contract casts to

uint an operation that is already performed between uint type variables.

Code Location:

Code Section - ConstantProduct2.sol#L42

Listing 10: ConstantProduct2.sol (Line 42)

36 function calcReserve(

37 uint[] calldata reserves ,

38 uint j,

39 uint lpTokenSupply ,

40 bytes calldata

41 ) external override pure returns (uint reserve) {

42 reserve = uint(( lpTokenSupply / 2) ** 2) / EXP_PRECISION;

43 reserve = LibMath.roundedDiv(reserve , reserves[j == 1 ? 0 :

ë 1]);

44 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation:

Consider removing the unnecessary casting. Nonetheless, the gas differ-

ential testing with and without the casting do not seem any different.

Thus, it is possible that is removed automatically by the compiler.
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Remediation Plan:

SOLVED: The Beanstalk team solved the issue in commit e5441fc7.
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https://github.com/BeanstalkFarms/Wells/commit/e5441fc78f0fd4b77a898812d0fd22cb43a0af55


4.8 (HAL-08) USE SAFE TAG IN INLINE
ASSEMBLY CODE SECTIONS -
INFORMATIONAL (0.0)

Description:

Solidity 0.8.13 marked the production readiness of the Yul IR pipeline.

This, helps to alleviate stack too deep errors and to optimize the code

compilation.

To mark a section as memory safe, it is only required to use the next

expression when opening an inline assembly block:

Listing 11: Example Usage

1 assembly ("memory -safe") {

2 ...

3 }

A memory-safe assembly block may only access the following memory ranges:

• Memory allocated by yourself using a mechanism like the allocate

function described above.

• Memory allocated by Solidity, e.g. memory within the bounds of a

memory array you reference.

• The scratch space between memory offset 0 and 64 mentioned above.

• Temporary memory that is located after the value of the free memory

pointer at the beginning of the assembly block, i.e. memory that

is “allocated” at the free memory pointer without updating the free

memory pointer.

The performance of the new pipeline is not yet always superior to the old

one, but it can do much higher-level optimization across functions.

48

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation:

Consider using the memory safe tag if appropriate for the assembly blocks.

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged this issue.
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4.9 (HAL-09) USE CUSTOM ERRORS TO
SAVE GAS - INFORMATIONAL (0.0)

Description:

Custom errors are available from Solidity version 0.8.4. Custom errors

save ~50 gas each time they are hit by avoiding having to allocate and

store the revert string. Not defining strings also saves deployment gas.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation:

Consider replacing all revert strings with custom errors.

Remediation Plan:

SOLVED: The Beanstalk team solved the issue in commit

e5441fc7.
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https://github.com/BeanstalkFarms/Wells/commit/e5441fc78f0fd4b77a898812d0fd22cb43a0af55


4.10 (HAL-10) UNNEEDED
INITIALIZATION OF INTEGER VARIABLES
TO 0 - INFORMATIONAL (0.0)

Description:

As i is an uint256, it is already initialized to 0. uint256 i = 0

reassigns the 0 to i which wastes gas.

Code Location:

Listing 12: GeoEmaAndCumSmaPump.sol (Line 88)

81 function pumps () public pure returns (Call[] memory _pumps) {

82 if (numberOfPumps () == 0) return _pumps;

83

84 _pumps = new Call []( numberOfPumps ());

85 uint dataLoc = LOC_VARIABLE + numberOfTokens () * 32 +

ë wellFunctionDataLength ();

86

87 uint pumpDataLength;

88 for (uint i = 0; i < _pumps.length; i++) {

89 _pumps[i]. target = _getArgAddress(dataLoc);

90 dataLoc += 20;

91 pumpDataLength = _getArgUint256(dataLoc);

92 dataLoc += 32;

93 _pumps[i].data = _getArgBytes(dataLoc , pumpDataLength)

ë ;

94 dataLoc += pumpDataLength;

95 }

96 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)
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Recommendation:

It is recommended not to initialize uint variables to 0 to reduce the gas

costs. For example, use instead:

Listing 13: GeoEmaAndCumSmaPump.sol (Line 88)

88 for (uint i; i < _pumps.length; i++) {

Remediation Plan:

SOLVED: The Beanstalk team solved the issue in commit 53b3a11a
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The manual testing is structured on (1) unit testing of all the functions,

(2) integration testing combining sets of transactions testing corner

cases, (3) attacking parts of the code to assure that there are no

vulnerable, and finally, (4) fuzzing important functions to make sure

everything works properly in all cases.

5.1 Wells Environment

Deployment Script:
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Helper Functions:

56

MA
NU

AL
TE

ST
IN

G



57

MA
NU

AL
TE

ST
IN

G



58

MA
NU

AL
TE

ST
IN

G



5.2 Significant Tests for Wells

Here are some examples of the tests performed:
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5.3 Pumps Environment

Two files have been developed to carry out the manual and fuzzing tests,

one dedicated to analyze some functions atomically HalbornPumpsIsolated,

and the other to carry out tests that involve integration with the Basin

HalbornPumpsWellsIntegration.

Deployment Script:
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Helper Functions:

For the helper functions, both custom functions along with those developed

by the Beanstalk developers themselves have been used.
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5.4 Significant Manual Tests for
Pumps
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5.5 Significant Fuzzing Tests for
Pumps
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6.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of cer-

tain areas of the scoped contracts. Among the tools used was Slither, a

Solidity static analysis framework. After Halborn verified all the con-

tracts in the repository and was able to compile them correctly into their

ABI and binary formats, Slither was run on the all-scoped contracts. This

tool can statically verify mathematical relationships between Solidity

variables to detect invalid or inconsistent usage of the contracts’ ABIs

across the entire code-base.
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Slither Results:

• Well.sol
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• GeoEmaAndCumSmaPump.sol
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• As a result of the tests carried out with the Slither tool, some

results were obtained and reviewed by Halborn. Based on the re-

sults reviewed, some vulnerabilities were determined to be false

positives.
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MythX Results:
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• No major issues found by the MythX tool.
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